PSNR#
-
class
ignite.metrics.
PSNR
(data_range, output_transform=<function PSNR.<lambda>>, device=device(type='cpu'))[source]# Computes average Peak signal-to-noise ratio (PSNR).
where is mean squared error.
y_pred and y must have (batch_size, …) shape.
y_pred and y must have same dtype and same shape.
- Parameters
data_range (Union[int, float]) – The data range of the target image (distance between minimum and maximum possible values). For other data types, please set the data range, otherwise an exception will be raised.
output_transform (Callable) – A callable that is used to transform the Engine’s process_function’s output into the form expected by the metric.
device (Union[str, torch.device]) – specifies which device updates are accumulated on. Setting the metric’s device to be the same as your update arguments ensures the update method is non-blocking. By default, CPU.
Example:
To use with
Engine
andprocess_function
, simply attach the metric instance to the engine. The output of the engine’sprocess_function
needs to be in format of(y_pred, y)
or{'y_pred': y_pred, 'y': y, ...}
.def process_function(engine, batch): # ... return y_pred, y engine = Engine(process_function) psnr = PSNR(data_range=1.0) psnr.attach(engine, "psnr") # ... state = engine.run(data) print(f"PSNR: {state.metrics['psnr']}")
This metric by default accepts Grayscale or RGB images. But if you have YCbCr or YUV images, only Y channel is needed for computing PSNR. And, this can be done with
output_transform
. For instance,def get_y_channel(output): y_pred, y = output # y_pred and y are (B, 3, H, W) and YCbCr or YUV images # let's select y channel return y_pred[:, 0, ...], y[:, 0, ...] psnr = PSNR(data_range=219, output_transform=get_y_channel) psnr.attach(engine, "psnr") # ... state = engine.run(data) print(f"PSNR: {state.metrics['psrn']}")
New in version 0.4.3.
Methods
Attaches current metric to provided engine.
Helper method to compute metric’s value and put into the engine.
Computes the metric based on it’s accumulated state.
Detaches current metric from the engine and no metric’s computation is done during the run.
Checks if current metric is attached to provided engine.
Helper method to update metric’s computation.
Resets the metric to it’s initial state.
Helper method to start data gathering for metric’s computation.
Updates the metric’s state using the passed batch output.
-
attach
(engine, name, usage=<ignite.metrics.metric.EpochWise object>)# Attaches current metric to provided engine. On the end of engine’s run, engine.state.metrics dictionary will contain computed metric’s value under provided name.
- Parameters
engine (ignite.engine.engine.Engine) – the engine to which the metric must be attached
name (str) – the name of the metric to attach
usage (Union[str, ignite.metrics.metric.MetricUsage]) – the usage of the metric. Valid string values should be
ignite.metrics.metric.EpochWise.usage_name
(default) orignite.metrics.metric.BatchWise.usage_name
.
- Return type
Example:
metric = ... metric.attach(engine, "mymetric") assert "mymetric" in engine.run(data).metrics assert metric.is_attached(engine)
Example with usage:
metric = ... metric.attach(engine, "mymetric", usage=BatchWise.usage_name) assert "mymetric" in engine.run(data).metrics assert metric.is_attached(engine, usage=BatchWise.usage_name)
-
completed
(engine, name)# Helper method to compute metric’s value and put into the engine. It is automatically attached to the engine with
attach()
. If metrics’ value is torch tensor, it is explicitly sent to CPU device.- Parameters
engine (ignite.engine.engine.Engine) – the engine to which the metric must be attached
name (str) – the name of the metric used as key in dict engine.state.metrics
- Return type
Changed in version 0.4.3: Added dict in metrics results.
Changed in version 0.4.5: metric’s value is put on CPU if torch tensor.
-
compute
()[source]# Computes the metric based on it’s accumulated state.
By default, this is called at the end of each epoch.
- Returns
- the actual quantity of interest. However, if a
Mapping
is returned, it will be (shallow) flattened into engine.state.metrics whencompleted()
is called. - Return type
Any
- Raises
NotComputableError – raised when the metric cannot be computed.
-
detach
(engine, usage=<ignite.metrics.metric.EpochWise object>)# Detaches current metric from the engine and no metric’s computation is done during the run. This method in conjunction with
attach()
can be useful if several metrics need to be computed with different periods. For example, one metric is computed every training epoch and another metric (e.g. more expensive one) is done every n-th training epoch.- Parameters
engine (ignite.engine.engine.Engine) – the engine from which the metric must be detached
usage (Union[str, ignite.metrics.metric.MetricUsage]) – the usage of the metric. Valid string values should be ‘epoch_wise’ (default) or ‘batch_wise’.
- Return type
Example:
metric = ... engine = ... metric.detach(engine) assert "mymetric" not in engine.run(data).metrics assert not metric.is_attached(engine)
Example with usage:
metric = ... engine = ... metric.detach(engine, usage="batch_wise") assert "mymetric" not in engine.run(data).metrics assert not metric.is_attached(engine, usage="batch_wise")
-
is_attached
(engine, usage=<ignite.metrics.metric.EpochWise object>)# Checks if current metric is attached to provided engine. If attached, metric’s computed value is written to engine.state.metrics dictionary.
- Parameters
engine (ignite.engine.engine.Engine) – the engine checked from which the metric should be attached
usage (Union[str, ignite.metrics.metric.MetricUsage]) – the usage of the metric. Valid string values should be ‘epoch_wise’ (default) or ‘batch_wise’.
- Return type
-
iteration_completed
(engine)# Helper method to update metric’s computation. It is automatically attached to the engine with
attach()
.Note
engine.state.output
is used to compute metric values. The majority of implemented metrics accepts the following formats forengine.state.output
:(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.y_pred
andy
can be torch tensors or list of tensors/numbers if applicable.- Parameters
engine (ignite.engine.engine.Engine) – the engine to which the metric must be attached
- Return type
Changed in version 0.4.5:
y_pred
andy
can be torch tensors or list of tensors/numbers
-
reset
()[source]# Resets the metric to it’s initial state.
By default, this is called at the start of each epoch.
- Return type
-
started
(engine)# Helper method to start data gathering for metric’s computation. It is automatically attached to the engine with
attach()
.- Parameters
engine (ignite.engine.engine.Engine) – the engine to which the metric must be attached
- Return type
-
update
(output)[source]# Updates the metric’s state using the passed batch output.
By default, this is called once for each batch.
- Parameters
output (Sequence[torch.Tensor]) – the is the output from the engine’s process function.
- Return type